A new technique for solving Fredholm integro-differential equations using the reproducing kernel method
نویسنده
چکیده مقاله:
This paper is concerned with a technique for solving Fredholm integro-dierentialequations in the reproducing kernel Hilbert space. In contrast with the conventionalreproducing kernel method, the Gram-Schmidt process is omitted hereand satisfactory results are obtained. The analytical solution is represented inthe form of series. An iterative method is given to obtain the approximate solution.The convergence analysis is established theoretically. The applicabilityof the iterative method is demonstrated by testing some various examples.
منابع مشابه
The combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملthe combined reproducing kernel method and taylor series for solving nonlinear volterra-fredholm integro-differential equations
in this letter, the numerical scheme of nonlinear volterra-fredholm integro-differential equations is proposed in a reproducing kernel hilbert space (rkhs). the method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. the nonlinear terms are replaced by its taylor series. in this technique, the nonlinear volterra-fredholm integr...
متن کاملSolving Fredholm integro-differential equations using reproducing kernel Hilbert space method
In this study, the numerical solution of Fredholm integro–differential equation is discussed in a reproducing kernel Hilbert space. A reproducing kernel Hilbert space is constructed, in which the initial condition of the problem is satisfied. The exact solution u x ð Þ is represented in the form of series in the space W 2 2 ½a; b. In the mean time, the n-term approxima te solution u n ðxÞ is o...
متن کاملA new reproducing kernel method for solving Volterra integro-dierential equations
This paper is concerned with a technique for solving Volterra integro-dierential equationsin the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernelmethod, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series. An iterative method is given toobtain the...
متن کاملReproducing Kernel Hilbert Space Method for Solving Fredholm Integro-differential Equations of Fractional Order
This paper presents a computational technique for solving linear and nonlinear Fredholm integro-differential equations of fractional order. In addition, examples that illustrate the pertinent features of this method are presented, and the results of the study are discussed. Results have revealed that the RKHSM yields efficiently a good approximation to the exact solution.
متن کاملA New Approach for Solving Volterra Integral Equations Using The Reproducing Kernel Method
This paper is concerned with a technique for solving Volterra integral equations in the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernel method, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series.An iterative method is given to obtain the approximate solution.The conver...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 11 شماره 2
صفحات 1- 14
تاریخ انتشار 2017-06-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023